

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International Advanced Level in Chemistry (WCH02) Paper 01 Application Of Core Principles Of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code WCH02_01_MS_1806
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question	Answer	Mark
Number		
1	The only correct answer is A	(1)
	B is not correct because NH₃ is trigonal pyramidal	
	C is not correct because H₃O+ is trigonal pyramidal	
	D is not correct because PCl₃ is trigonal pyramidal	

Question	Answer	Mark
Number		
2	The only correct answer is D	(1)
	A is not correct because BF₃ is trigonal pyramidal	
	B is not correct because CH₄ is tetrahedral	
	C is not correct because H ₂ O is V-shaped	

Question	Answer	Mark
Number		
3	The only correct answer is C	(1)
	A is not correct because the fluoride ion is the least polarisable	
	B is not correct because the fluoride ion is the least polarisable	
	D is not correct because the fluoride ion is the least polarisable	

Question	Answer	Mark
Number		
4	The only correct answer is A	(1)
	B is not correct because the bonding electron pair will be closer to the chlorine	
	$m{\mathcal{C}}$ is not correct because the hydrogen will be $\delta+$ and the chlorine $\delta-$	
	D is not correct because the bonding electron pair will be closer to the chlorine and the hydrogen will be δ + and the chlorine δ -	

Question Number	Answer	Mark
5	The only correct answer is C	(1)
	A is not correct because equilibria are dynamic and the reactions continue	
	B is not correct because equilibrium concentrations do not need to be equal	
	D is not correct because this will only be true when $\Delta H = 0$, and is independent of the establishment of equilibrium	

Question Number	Answer	Mark
6	The only correct answer is C	(1)
	A is not correct because oxidising agents are reduced	
	B is not correct because oxidising agents are reduced and gain electrons	
	D is not correct because oxidising agents gain electrons	

Question Number	Answer	Mark
7	The only correct answer is C	(1)
	A is not correct because atomic radius increases as atomic number of Group 2 metals increases	
	B is not correct because electronegativity decreases as atomic number of Group 2 metals increases	
	D is not correct because thermal stability increases as atomic number of Group 2 metals increases	

Question Number	Answer	Mark
8	The only correct answer is A	(1)
	B is not correct because this value has the correct magnitude but is negative	
	C is not correct because this is the enthalpy change of the reverse reaction	
	D is not correct because this is the enthalpy change of the reaction	

Question Number	Answer	Mark
9	The only correct answer is B	(1)
	A is not correct because calcium compounds give a yellow-red flame test	
	C is not correct because calcium compounds give a yellow-red flame test and calcium chloride would form a neutral solution	
	D is not correct because potassium chloride would form a neutral solution	

Question Number	Answer	Mark
10	The only correct answer is B	(1)
	A is not correct because this compound has six carbon atoms not seven	
	C is not correct because this compound has eight carbon atoms not seven	
	D is not correct because this compound has eight carbon atoms not seven	

Question	Answer	Mark
Number		
11	The only correct answer is A	(1)
	•	
	B is not correct because barium hydroxide is the most soluble Group 2 hydroxide	
	C is not correct because is not correct because barium hydroxide is the most soluble Group 2 hydroxide	
	D is not correct because is not correct because barium hydroxide is the most soluble Group 2 hydroxide	

Question Number	Answer	Mark
12	The only correct answer is D	(1)
	$m{A}$ is not correct because when expanding the bracket on the LHS, the $1H_2$ has been subtracted rather than added	
	${m B}$ is not correct because when expanding the bracket on the LHS, the $1H_2$ has been omitted	
	$m{C}$ is not correct because when expanding the bracket on the LHS, the $1H_2$ has not been been changed to $2H$ for the hydrocarbon formula	

Question Number	Answer	Mark
13	The only correct answer is A	(1)
	B is not correct because ozone does not reflect UV radiation	
	C is not correct because ozone does not break down chlorofluorocarbons	
	D is not correct because ozone does not reflect chlorofluorocarbons	

Question	Answer	Mark
Number		
14	The only correct answer is C	(1)
	,	
	A is not correct because this ignores the charge balance and miscalculates the oxidation number of chlorine as +4	
	B is not correct because this neglects the negative charge on the RHS	
	D is not correct because this ignores the charge balance and miscalculates the oxidation number of chlorine as +6	

Question Number	Answer	Mark
15	The only correct answer is D	(1)
	A is not correct because the conversion of butanoic acid to butan- 1-ol is a reduction	
	B is not correct because the conversion of butanoic acid to butan- 1-ol is a reduction	
	C is not correct because the conversion of butanoic acid to butan- 1-ol is a reduction	

Question	Answer	Mark
Number		
16	The only correct answer is C	(1)
	A is not correct because this is 40% of 8.4 g (the mass of the product)	
	B is not correct because this is the mass required if the yield is 100%	
	D is not correct because the molar masses have been used the wrong way round	

Question Number	Answer	Mark
17	The only correct answer is B	(1)
	A is not correct because this compound is oxidised to form an aldehyde or a carboxylic acid	
	C is not correct because this compound cannot be oxidised	
	D is not correct because this compound is oxidised to form an aldehyde or a carboxylic acid	

Question Number	Answer	Mark
18	The only correct answer is B	(1)
	A is not correct because this answer is based on 4 mol of nitrate ions per mole of calcium nitrate	
	C is not correct because this answer is based on 1 mol of nitrate ions per mole of calcium nitrate	
	D is not correct because this answer is based on 0.5 mol of nitrate ions per mole of calcium nitrate	

Question Number	Answer	Mark
19	The only correct answer is B	(1)
	A is not correct because the calculation gives an $A_r = 63.9$ but $A_r(Ca) = 40.1$	
	C is not correct because the calculation gives an $A_r = 63.9$ but $A_r(Mg) = 24.3$	
	D is not correct because the calculation gives an $A_r = 63.9$ but $A_r(Na \times 2) = 46$	

Question Number	Answer	Mark
20	The only correct answer is B	
	A is not correct because tetrathionate is formed not thiosulfate	
	C is not correct because tetrathionate is formed not sulphite	
	D is not correct because tetrathionate is formed not peroxodisulfate	

Total for SECTION A = 20 marks

Section B

Question Number	Acceptable Answers	Reject	Mark
21(a)(i)	Iodide / I ⁻ /Silver Iodide/AgI	Iodine ion /I/iodine	(1)

Question Number	Acceptable Answers	Reject	Mark
21(a)(ii)	EITHER		(1)
	Chloride/Silver chloride / Cl ⁻ /AgCl	chlorine / Cl /chlorine ions	
	OR		
	Bromide /Silver Bromide / Br ⁻ /AgBr	bromine / Br /bromine ions	
	ALLOW	,	
	Both		

Question Number	Acceptable Answers	Reject	Mark
21(a)(iii)	$Ag^{+}(aq) + I^{-}(aq) \rightarrow AgI(s)$		(2)
	Species (1)		
	All state symbols (1)		
	M2 dependent on M1 (or near miss)		
	ALLOW		
	TE on incorrect halide in (a)(i) Max 2		
	If the halide in (a)(ii) is used in a completely correct equation award 1		

Question	Acceptable Answers	Reject	Mark
Number			
21(b)(i)	HCl(aq) / HCl(g) / HCl		(1)
	IGNORE		
	Hydrogen chloride / hydrochloric acid		

Question Number	Acceptable Answers	Reject	Mark
21(b)(ii)	$H_2SO_4 + KCI \rightarrow KHSO_4 + HCI$		(1)
	ALLOW		
	$H_2SO_4 + 2KCI \rightarrow K_2SO_4 + 2HCI$		
	ALLOW Multiples		
	HKSO₄		
	IGNORE		
	State symbols, even if incorrect		

Question	Acceptable Answers		Reject	Mark
Number				
21(c)(i)	(In H ₂ SO ₄) +6 /+VI /6+	(1)		(2)
	(In SO ₂) +4 /+IV / 4+	(1)		
	Penalise omission of + sign once only			

Question Number	Acceptable Answers	Reject	Mark
21(c)(ii)	$H_2SO_4 + 2H^+ + 2Br^- \rightarrow Br_2 + SO_2 + 2H_2O$		(2)
	M1 : for both Br_2 and SO_2 as products (1)		
	M2 : for coefficients 2, 2 and 2 (1)		
	ALLOW multiples		
	M2 depends on M1		
	IGNORE		
	state symbols even if incorrect		

Question Number	Acceptable Answers		Reject	Mark
21(d)	ALLOW products in either order with mat observation		(4)	
	Hydrogen sulfide / H ₂ S	(1)		
	Smell of (rotten) eggs/pungent / bad			
	ALLOW			
	Lead ethanoate/nitrate paper turns black	(1)		
	Sulfur / S / S ₈	(1)		
	Yellow and solid /precipitate	(1)		
	If I_2 is included with the two reduction prothen Max 3	ducts		
	Observation depends on correct product			
	IGNORE			
	further tests on products and results			

(Total for Question 21 = 14 marks)

Question Number	Acceptable Answers	Reject	Mark
22(a)	To increase the surface area (of the solid)		(1)
	OR		
	to increase rate (of reaction)/goes faster/speeds up		
	IGNORE		
	To ensure complete reaction		

Question Number	Acceptable Answers	Reject	Mark
22(b)	$MgCO_3(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2O(l) + CO_2(g)$		(2)
	OR		
	$MgCO_3(s) + 2H^+(aq) \rightarrow Mg^{2+}(aq) + H_2O(I) + CO_2(g)$		
	Species (1) Balancing and all state symbols (1)		
	M2 dependent on M1 ALLOW		
	M2 for fully correct equation with H ₂ CO ₃ (aq)		

Question Number	Acceptable Answers		Reject	Mark
22(c)	M1: Maximum rate at start / starts fast a (gradually) slows (until it stops)/rate decreases	and		(3)
	ALLOW the rate is constant over the first minute (as it is almost a straight line)	(1)		
	M2: Collision frequency decreases/numb of (successful) collisions decreases	er	Between molecules/atoms	
	AND			
	concentration of hydrochloric acid decreases / surface area of mineral decreases/concentration of reactants/		Concentration of MgCO₃	
	reactants used up	(1)	Just activation energy reasoning	
	M3: Rate is zero / reaction stops (between 3.5 - 4 min) when all MgCO ₃ /solid has reacted	(1)	All the acid/ reactants used up	

Question Number	Acceptable Answers	Reject	Mark
22(d)(i)	1st mark: Reading off 200 cm ³ from graph (1) 2nd mark: mol CO ₂ = mol MgCO ₃ (= 200 ÷ 24000) = 0.008333 (mol)/ 8.333 x 10 ⁻³ (mol) or fraction 1/120(mol))	(2)
	IGNORE SF except 1 SF (1 Correct answer with or without working scores (2) No TE on incorrect reading from graph		

Question Number	Acceptable Answers	Reject	Mark
22(d)(ii)	MP1		(2)
	Mass MgCO ₃ (= 0.0083333333×84.3) = $0.7025 / 0.703$ (g)		
	ALLOW		
	0.702 (g)		
	Use of 84 g mol ⁻¹ = 0.70(0) g (1) TE from d(i)		
	Correct answer with or without working scores 1 MP2		
	% of MgCO ₃ = $\frac{0.7025}{0.936}$ x100%		
	% of MgCO ₃ = 75.0534%		
	ALLOW Use of 84 g mol ⁻¹ giving 74.78632% (1)		
	Correct answer with or without working scores 1		
	IGNORE SF except 1 SF in MP1 and MP2		
	TE from incorrect no of moles from d (i)		
	TE from incorrect Mr calculation in MP1 as long as the answer is less than 100 %		

Question Number	Acceptable Answers	Reject	Mark
22(e)	M1 CO ₂ (slightly) soluble/dissolves /absorbed in water (1)	CO₂ escapes	(2)
	ALLOW Remains in water		
	M2 (volume of CO ₂ collected is less) so mass / moles of MgCO ₃ lower /reduced OR		
	(volume of CO_2 collected is less) so % (by mass) of Mg CO_3 lower (1)		
	M2 is dependent on M1 or indication that the volume of CO_2 is less.		

(Total for Question 22 = 12 marks)

Question Number	Acceptable Answers	Reject	Mark
*23(a)(i)	M1: The mixture (initially) goes darker (brown) (because the concentration increases) (1)		(3)
	M2: The mixture turns paler /colourless (on standing)		
	AND		
	because the equilibrium shifts to the right		
	ALLOW Suitable alternatives for "to the right", such as: towards the products towards N_2O_4 in forward direction favours the right (1)		
	M3: Right-hand side has fewer (gaseous) moles/molecules	atoms	
	OR		
	Left-hand side has more (gaseous) moles/molecules (1)		
	IGNORE References to rate		

Question Number	Acceptable Answers	Reject	Mark
23(a)(ii)	Equilibrium shifts to the left/backwards		(1)
	in the endothermic direction / away from the exothermic side/because the (forward) reaction is exothermic IGNORE Colour change		

Question Number	Acceptable Answers	Reject	Mark
*23(b)	M1: (Addition of alkali)		(2)
	Alkali/OH ⁻ reacts with H ⁺ / alkali removes H ⁺ / neutralises acid H ⁺		
	ALLOW		
	$H^+ + OH^- \rightarrow H_2O \tag{1}$		
	IGNORE increases the amount of water		
	M2: Equilibrium (position) shifts to the right (forming yellow CrO_4^{2-})		
	ALLOW Suitable alternatives for "to the right", such as: towards the products towards CrO ₄ ²⁻ /H ⁺		
	in forward direction		
	favours the right (1)		
	M2 is dependent on M1 or near miss		

(Total for Question 23 = 6 marks)

Question Number	Acceptable Answers	Reject	Mark
24(a)(i)	(Reagents): potassium hydroxide /KOH / sodium hydroxide / NaOH (1)	OH-	(2)
	(Conditions): Aqueous/water and heat		
	ALLOW Warm/reflux/ high temperature for heat (1)		
	The conditions mark depends on a correct reagent mark or near miss		

Question Number	Acceptable Answers		Reject	Mark
24(a)(ii)	H_3C C C C C C C C C C			(4)
	H H ₃ C—C C C OH + :Br - H			
	M1 Curly arrow from lone pair on OH to carbon	(1)		
	M2 Curly arrow from C-Br bond to Br or just beyond	(1)		
	M3 Dipole	(1)		
	M4 Correct organic product and Br ⁻ ion/KBr/NaBr	(1)		
	OR		Missing hydrogens/	
	Correct S _N 2 mechanism scores (4) M1		wrong alcohol	
	Dipole and Curly arrow from C-Br bond to Br or just	t (1)		
	M2 Curly arrow from lone pair to carbon	(1)		
	M3 Correct intermediate showing dotted bonds to both I and OH and negative charge. (Br (1)		
	M4 Correct organic product and Br ⁻ ion/KBr/ NaBr	(1)		
	ALLOW M1, M2 and M4 for S _N 1 mechanism			
	IGNORE		Missing hydrogens/	
	Omission of lone pair on Br ⁻ ion		wrong alcohol	

Question Number	Acceptable Answers	Reject	Mark
*24(b)	Any three from		(3)
	M1 Water forms two hydrogen bonds (1)		
	M2 butan-1-ol forms (one) hydrogen bond(s) (1)		
	M3 1-bromobutane forms London Forces (1)		
	M4 butan-1-ol forms hydrogen bonds with water (1)		
	M5 butan-1-ol forms London Forces with 1-bromobutane (1)		
	M6 1-bromobutane cannot form hydrogen bonds with water (1)		
	ALLOW van der Waals' / dispersion forces		
	IGNORE Dipole-dipole interactions/polarity		

(Total for Question 24 = 9 marks)

Total for SECTION B = 41 marks

Section C

Question Number	Acceptable Answers	Reject	Mark
25(a)(i)	$M_{\rm r}$ / molecular ion / molar mass (of ethanol = 46)	atomic mass	(1)
	IGNORE Reference to ¹² C not ¹³ C		

Question Number	Acceptable Answers	Reject	Mark
25(a)(ii)	CH₂OH ⁺	CH₃O ⁺	(2)
	OR		
	Displayed formula		
	ALLOW		
	Charge on any part of the ion (1)		
	CH₃ is lost (from the molecular ion)/C-C bond is broken (1)		
	IGNORE		
	Fragmentation/molecule breaks down Charge or dot on CH ₃		

Question	Acceptable Answers	Reject	Mark
Number			
25(a)(iii)	O $-H$ and (between) 3750 $-$ 3200 (cm $^{-1}$)	Single	(1)
		wavenumber	
	ALLOW	Just	
		'Alcohol/ethanol'	
	Any range that includes 3350 within the		
	correct range		

Question Number	Acceptable Answers	Reject	Mark
*25(b)(i)	1st mark: Atom / group of atoms /part of a molecule (1)	Just group	(2)
	ALLOW Examples such as C=C, O-H	Just alkene, alcohol	
	2nd mark: that determines its chemical properties /that determines its characteristic set of reactions/how it will react (1)		
	IGNORE		
	Physical properties		

Question Number	Acceptable Answers		Reject	Mark
25(b)(ii)	$ \begin{array}{c} 2C_2H_5OH + 2Na \rightarrow 2C_2H_5ONa + H_2\\ OR\\ C_2H_5OH + Na \rightarrow C_2H_5ONa +1/2 H_2\\ OR\\ Other\ multiples \end{array} $		C₂H₅O—Na	(2)
	I	(1) (1)		
	M2 dependent on award of M1 or no miss such as C_2H_5O —Na or incorrect charges on the ethoxide.			
	ALLOW ionic charges on product			
	IGNORE State symbols, even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
25(c)(i)	MP1 Moles of CO_2 (= $\frac{1.79}{44(.0)}$) = 0.040681818 (mol) (1)		(2)
	MP2: Mass of C (= 12(.0) x 0.040681818) = 0.488 g		
	IGNORE SF except 1 SF (1)		
	Correct answer with or without working scores (2)		

Question Number	Acceptable Answers	Reject	Mark
25(c)(ii)	Mass of O (= $1.20 - 0.0610 - 0.488$) = $0.650818 = 0.651$ (g)		(1)
	IGNORE		
	SF except 1 SF		
	ALLOW		
	TE from (c)(i)		

Question Number	Acceptable Answers	Reject	Mark
25(c)(iii)	M1 (Mole ratios)		(2)
	C : H : O		
	0.488 0.0610 0.651 12(.0) 1(.0) 16(.0)		
	= 0.0407 = 0.0610 = 0.0407 (1)		
	IGNORE SF and rounding		
	M2 (Empirical formula)		
	$C_2H_3O_2 \tag{1}$		
	No TE from incorrect mole ratio		

Question Number	Acceptable Answers	Reject	Mark
25(c)(iv)	E has Structure 2 because		(1)
	Either M_r of empirical formula = 59 and $\frac{118}{59} = 2$		
	OR molecular formula of structure 2 is $C_4H_6O_4$		
	OR the molecular formula of structure 1 is $C_5H_8O_2$ which is not a multiple of the empirical formula		
	OR the ratio of carbon to oxygen in structure 2 is 1:1 which is the same as the empirical formula		
	OR the ratio of carbon to oxygen in structure 1 is 5:2		
	No TE from (c) (iii)		

Question Number	Acceptable Answers		Reject	Mark
25(c)(v)	M1 Test with bromine / bromine water	(1)		(2)
	M2 Structure 1 turns colourless (from orange / yellow/ brown) and Structure 2 no change	(1)		
	OR M1 Test with acidified potassium manganate((VII))/KMnO ₄ (aq)	(1)		
	M2 Structure 1 turns colourless (from purple/pink) and Structure 2 no change	(1)		

Question Number	Acceptable Answers	Reject	Mark
25(c)(vi)	H H H H	O-H-C	(1)
	Any combination of aldehydes, alcohols and a single carboxylic acid which can be oxidised IGNORE Skeletal and structural formulae Connectivity of a vertical OH		

Number	
*25(c)(vii) M1 Restricted rotation / no rotation/ AND around the C=C/double bond/ pi bond M2 Each or both C atom(s) of the (C=C) double bond is attached to (two) different groups/different atoms/functional groups This can be shown with 2 diagrams of structure 1 IGNORE Different masses/different priorities	(2)

(Total for Question 25 = 19 marks)

Total for SECTION C = 19 marks

TOTAL FOR PAPER = 80 MARKS

